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ABSTRACT

Acyclic N-Cr-branched, N-bis(trimethylsilyl)methyl (N-BTMSM) diazoamides undergo regio-, chemo-, and diastereoselective Rh(II)-carbenoid
C-H insertion to give 4,5-disubstituted and 3,4,5-trisubstituted γ-lactams. The conformational influence of the N-BTMSM group and the electronic
effect of the O-pivaloyl moiety of the Cr-oxymethylene unit are essential for the observed regioselectivity. The synthesis of r-allokainic acid
demonstrates the utility of the method.

The Rh(II)-carbenoid-mediated intramolecular C-H insertion
of tertiary R-diazoamides is a useful method1 especially for

the preparation of 4-substituted and 3,4-disubstituted γ-lac-
tams. On the other hand, the Rh(II)-catalyzed reaction of
diazoamides 1 (Figure 1), bearing a substituent at the N-CR

position (here on referred to as N-CR-branched), to form 4,5-
disubstituted and 3,4,5-trisubstituted γ-lactams has not been
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Figure 1. Potential C-H insertion sites.
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well explored. The number of potential, competitive metal-
locarbenoid reaction sites (indicated byf) in 1 has increased,
and the control of site- and diastereoselectivity in this system
poses an interesting and challenging question.

An early study, reported by Zaragoza,2a is the Rh(II)-
catalyzed C-H insertion of R-diazoamide 2 (eq 1), which
occurred with poor regio- and chemoselectivity to give only
a low yield of the desired γ-lactam 3. The products 4 and 5,
which arose from Rh(II)-carbenoid attack at the N-benzhydryl
group, and the imine 6 were also obtained. To circumvent
this difficulty, Hashimoto and co-workers resorted to the use
of the 2,2-dimethyloxazolidine diazoamide (eq 1) 7.2b The
Rh(II)-catalyzed reaction of 7 preferentially led to the desired
γ-lactam 8, and this observation was subsequently further
developed by Jung and co-workers.2c

We recently reported3 that the N-BTMSM group is a
practical, nonparticipatory N-protecting group which is
effective for controlling site selectivity in Rh(II)-catalyzed
reactions of tertairy R-diazoamides. We noted that the
N-BTMSM unit has a subtle but important influence on the
conformational preferences about the amide N-CR σ bond
in N-CR-branched diazoamides.3c Following this cue, we
initiated studies on the Rh(II)-catalyzed reaction of acyclic
diazoamides of type 1 (R ) BTMSM, Figure 1). We chose
the oxymethylene moiety as one of the CR-substituents as it
provides flexibility for subsequent functional group manipu-
lation in the context of synthetic applications. Herein, we
report the preliminary findings of our studies and demonstrate
the utility of the method in the synthesis of (()-R-allokainic
acid.

The Rh2(OAc)4-catalyzed reaction of the diazoamide4a 9 was
first tested to assess the regioselectivity of the reaction. It is
clear from Table 1 that γ-lactam formation is influenced by

subtle electronic effects from the R-substituent on the carbenoid
carbon and the O-substituent of the oxymethylene group. With
9a (entry 1), preferential C-H insertion at the butyl group to
give the γ-lactam 10a was observed, and the �-lactam 12a,
arising from insertion at the N-CR-H unit, was obtained as a
minor product. It is intereting to note that the γ-lactam 10a
was obtained as a single diastereomer having the C3,C4-trans;
C4,C5-trans relative stereochemistry.4b The lactam 11a, which
could be formed via metallocarbenoid attack at the electronically
activated5a ether C-H bond, was not detected. In accord with
our previous results,3 the N-BTMSM group was inert under
the reaction conditions. Unexpectedly, with the unsubstituted
diazoamide 9b (entry 2), insertion at the ether C-H bond is
now favored to afford γ-lactam 11b; the γ-lactam 10b, obtained
only as the trans diastereomer, was the minor product, and the
�-lactam 12b was not detected.

To dissuade C-H insertion at the N-CR-oxymethylene
moiety, the O-MOM group was replaced with the O-pivaloyl
(Piv) group as in diazoamides 9c,d. It was reasoned that the
electron-withdrawing effect of the O-Piv unit would deac-
tivate the adjacent methylene C-H bonds toward metallo-
carbenoid insertion. Thus, reaction of 9c gave the trans,trans-
10c (major product) and �-lactam 12c (minor product) as
was observed for the reaction of 9a (entry 1). Interestingly,
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Table 1. Rh2(OAc)4-Catalyzed Reaction of Diazoamide 9

relative yields (%)

entry diazo yield (%)a 10 11d 12 13

1 9a 73 89b 0 11e 0
2 9b 82 34c 66 0 0
3 9c 88 80b 0 20e 0
4 9d 83 78c 8 8 6f

a Combined isolated yields. Relative stereochemistry: t ) trans, c )
cis. b 10a, only t,t; 10c, t,t:t,c ) 15:1. c 10b, only t; 10d, t:c ) 20:1. d 11b,
t:c ) 1:1; 11d, only c. e Inseparable t/c diastereomers: 12a, t:c ) 4:1; 12c,
t:c ) 2:1. f Relative stereochemistry was unassigned.
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however, with 9d C-H insertion to the butyl group to give
trans-10d was now more favored over formation of γ-lactam
11d (entries 2 and 4). The formation of 11d and �-lactam
12d was competitive; unexpectedly, the δ-lactam 13d was
also obtained albeit in low yield.

It is evident that the O-Piv group is especially useful in
suppressing C-H insertion at the N-CR-oxymethylene unit
in R-unsubstituted diazoamides (9b vs 9d). To further assess
the influence of electronic effects on regio- and chemose-
lectivity, the Rh(II)-catalyzed reaction of the R-unsubstituted
diazoamides carrying a N-CR benzyl (14a) and 4-nitrobenzyl
(14b) group was studied.

The results in Table 2 show that Rh(II)-carbenoid C-H
insertion preferentially occurred at the benzylic position to
give γ-lactams 15,4b and the O-Piv group’s effectiveness in
curtailing C-H insertion at the oxymethylene unit was
maintained. With 14a, the Rh2(cap)4-catalyzed reaction gave
only trans-15a and 16a (entry 1), wherein 15a was the major
product. With Rh2(OAc)4 the formation of trans-15a was
still preferred over 16a, but minor amounts of the �-lactam
17a and the cycloheptatriene 18a were also obtained (entry
2). It should be noted that although Rh2(OAc)4-carbenoid attack
at the phenyl unit was significantly competitive in simpler
N-BTMSM diazoamides3c it was not the case here. In the
Rh2(tfa)4-catalyzed reaction (entry 3) almost equiamounts of
trans-15a and 18a were obtained indicating a significant erosion
of chemoselectivity. However, regioselectivity was still very
good as the γ-lactam 15a was formed along with minor amounts
of 16a and 17a. The reaction of 14b was then explored wherein

the presence of the electron-withdrawing nitro group was
expected to suppress the formation of the cycloheptatriene
derivative 18b thereby improving chemoselectivity. Thus, with
Rh2(cap)4 and Rh2(OAc)4 only trans-15b and 16b were formed
(entries 4 and 5), with 15b as the preferred product. For the
Rh2(tfa)4-catalyzed reaction, the formation of 18b is markedly
reduced. Although trans-15b was formed as the major product,
there was a slight increase in the yields of 16b and 17b (entries
3 and 6).

This latter result suggests that the nitro group had not only
deactivated the phenyl ring toward metallocarbenoid attack
but also decreased, somewhat, the reactivity of the benzylic
C-H bonds.5b

Next, the regioselectivity of the Rh(II)-catalyzed reaction of
diazoamides 19 (Table 3) was investigated. In this system,

Rh(II)-carbenoid attack at the aryl moiety is not expected on
the basis of our previous studies.3b,c The results show that
metallocarbenoid C-H insertion preferentially occurred at
the phenethyl/arylethyl moiety to give γ-lactams 20 as the
major product. Further, 20 was obtained as a mixture of
readily separable trans- and cis-20, wherein the former
predominated. It is also evident that product distribution was
catalyst dependent. For 19a, Rh2(cap)4 provided the best
regioselectivity favoring formation of γ-lactams 20a and 21a;
�-lactam 22a was not detected; and δ-lactam 23a was
obtained in very minor amounts (entry 1). In comparison,
Rh2(OAc)4 and Rh2(tfa)4 gave lower regioselectivity as the
�-lactam 22a was also formed in significant amounts (entries
2 and 3). The Rh2(cap)4-catalyzed reaction of 19b,c revealed
that the electronic effect of a para-substituent5b on the
reactivity of the benzylic C-H bonds was subtle. Thus,
compared to 19a, the electron-donating 4-MeO substituent
in 19b only slightly favored the formation of the δ-lactam
23b, whereas the electron-withdrawing 4-NO2 group in 19c

Table 2. Rh(II)-Catalyzed Reaction of Diaoamide 14a

relative yields (%)

entry diazo catalyst yields (%)b 15c 16d 17 18

1 14a Rh2(cap)4 76 89 11 0 0
2 14a Rh2(OAc)4 88 75 22 1 2
3 14a Rh2(tfa)4 90 44 7 9 40
4 14b Rh2(cap)4 88 72 28 0 0
5 14b Rh2(OAc)4 94 72 28 0 0
6 14b Rh2(tfa)4 90 77 9 11 3
a Relative stereochemistry: t ) trans, c ) cis. b Combined isolated yields.

c Only t-diastereomers obtained. d Inseparable mixture of t- and c-16: entry
1, t:c ) 2:1; entry 2, t:c ) 1:6; entry 3, t:c ) 1:2.2; entry 4, t:c ) 2:1;
entry 5, t:c ) 1:5; entry 6, only c-16.

Table 3. Rh(II)-Catalyzed Reaction of Diazoamide 19f

relative yields (%)

entry diazo catalyst yields (%)b 20c 21d 22 23e

1 19a Rh2(cap)4 87 87 (3:1) 12 0 1f

2 19a Rh2(OAc)4 99 67 (5:1) 20 10 3g

3 19a Rh2(tfa)4 96 70 (10:1) 10 17 3g

4 19b Rh2(cap)4 95 85 (3:1) 8 1 6f

5 19c Rh2(cap)4 88 82 (3:1) 18 0 0
a Relative stereochemistry: t ) trans, c ) cis. b Combined isolated yields.

c Ratio of separable t-20/c-20 in brackets. d Inseparable t-21/c-21. e Relative
stereochemistry was unassigned. f Single diastereomer. g Two inseparable
diastereomers.
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discouraged metallocarbenoid insertion at the benzylic position
(entries 4 and 5). In this latter case, high regioselectivity, similar
to that observed for 19a, was realized (entries 1 and 5).

The utility of this method is demonstrated by the synthesis
of (()-R-allokainic acid (24),2b,c,6 whose retrosynthesis
(Figure 2) was guided by the above-described combined

results. Compound 25 was identified as an intermediate,
which can be prepared from 26a; 26a is to be made from
diazoamide 27.

The synthesis started with the Rh2(OAc)4-catalyzed reac-
tion of 277a (Scheme 1), which efficiently (91%) gave a 3.8:1

ratio of the readily separable trisubstituted γ-lactam 26 and
the �-lactam 28; however, each of these lactams was obtained
as an inseparable mixture of two diastereomers. Ketalization
of γ-lactam 26 afforded an 86% yield of the ketal 29 as an

oil. Gratifyingly, the ketal diastereomers were amenable to
separation by chromatography, which provided a 21:1 ratio
(based on isolated yields) of 29a:29b. The major diastere-
omer 29a was N-deprotected3b,c to give a 90% yield of
crystalline 30. At this juncture, a single-crystal X-ray analysis
was performed on 30,7b which helped to establish its relative
stereochemistry as C3,C4-trans; C4,C5-trans. For the minor
diastereomer 29b, NOE experiments gave, upon irradiation
of H-5, an 8.7% enhancement of H-4, but none for H-3. This
led us to assign the C3,C4-trans; C4,C5-cis relative stereo-
chemistry to 29b. The combined data also allowed the
assignment of the relative stereochemistry for the major
diastereomers 26a and 29a as C3,C4-trans; C4,C5-trans and
for the minor diastereomers 26b as C3,C4-trans; C4,C5-cis.

Compound 30 was then treated with LiAlH4 in refluxing
THF to reduce the lactam carbonyl unit and effect O-
depivaloylation to obtain the corresponding pyrrolidine
alcohol, which without isolation was converted to N-Boc
carbamate 25 in 63% yield (over two steps). The 4-meth-
oxyphenyl group in 25 was to serve as a carboxylic acid
equivalent. Thus, acid-catalyzed hydrolysis of the ketal unit
followed by RuO4 oxidation8 of the primary alcohol and
4-methoxyphenyl groups provided the crude diacid, which
was immediately methylated (CH2N2) to give 319 in 61%
overall yield (three steps). Subsequent Wittig methylenation
of 31 installed the isopropenyl group, followed by base
hydrolysis and then N-Boc deprotection using TFA to yield
(()-R-allokainic acid (24). Purification (Dowex 50W-H+)
gave (()-24 in 61% yield, which showed melting point and
spectroscopic data in agreement with reported data.2b,6e,f

In summary, intramolecular Rh(II)-carbenoid-mediated
C-H insertion of acyclic N-CR-branched N-BTMSM diaz-
oamides proceeded efficiently with good to excellent regio-,
chemo-, and diastereoselectivity to give highly functionalized
di- and trisubstituted γ-lactams. The high regioselectivity
realized in γ-lactam formation arises from (i) the confor-
mational effect of the N-BTMSM group on the amide
N-C(O) unit and N-CR σ bond and (ii) the electronic effect
of the OPiv unit of the oxymethylene group. The utility of
the method was demonstrated by the total synthesis of (()-
R-allokainic acid (24).
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Figure 2. Retrosynthesis of 24.

Scheme 1. Synthesis of 24
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